
An Efficient Delivery of Historical Information for
The Mendelian Inheritance in Man Database

Peter Li, David Waldo, Stuart Pineo, and Patricia Foster
Genome Database, Johns Hopkins University, Baltimore, MD

The ability to manage information with regard to
changes in a database is criticalfor quality control.
This information can also provide audit trails about
the time of the change and the person who made the
change. In addition, historical information can pro-
vide the proper context in which to interpret the rela-
tionships between the current and past data. In most
genomic databases, only the most recent copy of the
information is presented to the user, thereby losing the
audit trail and the historical context. Therefore, we
have constructed a delivery mechanism for the histor-
ical information in the Mendelian Inheritance in Man
database. Futhermore, this feature was designied to
optionally display only the changes so that the user
can bypass the unchanged portions of the text. It was
anticipated that technical problems would influence
the acceptance of this information delivery. However
the involvemenit of the editorial staff became the criti-
calfactor

INTRODUCTION
There are many uses for historical information in a

database. One such use is for audit trails in quality
control. For example, a quality examiner would like to
know when a change was made in the database or who
made the change, especially if the change has legal or
financial implications. Another use for historical
information is to represent consistent inter-data link-
ing. For example, if several pieces of data were linked
together based on the semantics of the data, then a
change in one of the component data may alter the
semantics and, consequently, may affect the links.
This can lead to complex and cascaded link updates.
One solution is to link with an historical state of that
data, which will always remain semantically valid. A
final use for historical information is to study the
trends in a domain. For example, if the database is
used to support a scientific endeavor, one can study
the historical changes to the database entries as indica-
tors for trends in that domain.
There are several methods of managing historical

information [1]. One way is to describe explicitly the
date in the schema and associate a date with each
changing data value. This method has high cognitive
cost because the user or the application for such a
database must build the historical context using tem-
poral logic. A second way is to use data versioning, a
concept for managing historical or alternative data

sets that are related to a single database object, not
unlike versions of a journal article manuscript. Data
versioning can be implicit, where old data are auto-
matically archived when a change is applied. Recent
commercial databases have incorporated such a con-

cept [2], but the burden is on storage management,
i.e., what portion of the data are versioned when only
part has been changed. A third approach is to use

explicit versioning, i.e., specific data are defined to be
versioned, so that only these will be archived when
changes occur. Another consideration is how the
changes are stored. The previous methods refer to
archiving old data by keeping a copy of that data in
the database. However, it is just as valid to store the
"change process," i.e., as a transform that can be
applied to the data. The trade-off is the space needed
to store the older copies vs. the time needed to com-
pute the older data based on the stored change pro-
cesses.

While all these methods apply to text and nontext
databases alike, the advances in historical databases
mainly occurred in database technology such as rela-
tional and object-oriented DBMS [3]. On the other
hand, text databases are usually considered static,
where every piece of text, once entered, is immutable.
Certain textual databases, e.g., medical records, are
"append-only" where new information is only added
at the end of existing entries [4]. These can be ade-
quately managed with the current technology of date-
stamping. However, there is also a category of textual
databases, such as Mendelian Inheritance in Man
(MIM) [5], where changes include replacement and
deletion of text. Other examples include the summary
of a patient's medical history or the active problem
list where changes occur in a "nonappend" manner.
However, these examples are often encoded using
relational means, thereby losing the free text search
feature associated with text databases.

In this article, we use the MIM database as an
example to explore the issues involved in the con-
struction and delivery of historical information: the
simplifying assumptions, the common UNIX utilities
used, and the major design issues that affected the
acceptance of this database extension.

TECHNICAL DESIGN
To support full historical access, one should be able

to formulate queries for a version of the database at

0195-4210/95/$5 .00 (C 1995 AMIA, Inc. 127

any given time in the past. Under this scenerio, all
information (past and present) must be indexed for
efficient retrieval. However, this is currently beyond
the capability of our IRx text search engine [6]. There-
fore, we focused on the delivery of audit trail informa-
tion while developing a more capable search engine.
The MIM Database
Mendelian Inheritance in Man (MIM) is a compre-

hensive catalog of genes and inheritable human phe-
notypes. It is an online text database composed of
7,200 entries describing the clinical aspects of dis-
eases and the molecular aspects of genes. Each entry
is encoded in Standard Generalized Markup Language
(SGML) [7]. The architecture of this database has
been discussed elsewhere [8]. Briefly, MIM is built
with UNIX directories and text files placed under
Revision Control System (RCS) [9]. All accesses
(retrievals and updates) are governed by several
UNIX shell scripts and perl programs [10]. This
SGML database is converted to many different distri-
bution formats: printed form (book), CDROM for PC-
based retrieval, flat ASCII files for Internet file trans-
fer, and HTML-encoded files for World-Wide Web
(WWW) access [11]. Because the WWW access
(http://gdbwww.gdb.org/omim/docs/omimtop.html)
is the most active distribution method, we chose to
deliver the historical information via WWW.

Prior to SGML conversion, MIM entries were orga-
nized in "diachronic" fashion, i.e., new material was
added to the end of the text with minimal changes to
the previously entered text. With the SGML conver-
sion, a new format was introduced into the database
that supported "synchronic" organization of informa-
tion, where the text is broken down into several topi-
cal sections with a section dedicated to historical
information [5]. However, this does not ensure that
changing an entry will automatically migrate the old
text to that section. Therefore, an another mechanism
was needed to provide historical changes in the proper
context.

RCS History
Revision Control System (RCS) is a tool that

archives different versions of a file. It stores the most
recent version as-is, but only the differences needed to
regenerate the previous versions. This is a common
tool used in software development and in UNIX docu-
ment management. The MIM database has been using
RCS for the past 7 years. However, the conversion of
entries to the SGML format forced a break in the
archive history, and therefore, only post-SGML con-
version changes, after January 1994, are available
through current RCS archives.
When a MIM entry file is updated via the "checkin"

command, information about the person and the time
is added to the archive. It also asks for a brief sum-
mary of the changes that were made to the entry. This
summary is stored as part of the revision log. RCS
provides a "rlog" command to retrieve just the log of
changes. The output of "rlog" is converted to a list of
choices in an HTML (WWW hypertext) file format
(Fig. 1). The end-user can then select the particular
version to view through a WWW browser.

checkin new entries

person,
time,
summary

RCS Archive

log of
changes

current and
past versions

HTML File

Figure 1: RCS to HTML

UNIX "diff"
With RCS, we can deliver any previous version of

the entry. However, due to the editorial nature ofMIM
entries, it is just as important to show only the
changes between one version against another. A
UNIX utility, named "diff' [12], can determine the
lines of text that were changed from one version to the
next. For historical queries, "diff' is applied to show
the changes between two previous versions of an
entry and between any version against the current ver-

RCS Archive

version A version B

UNIX diff

remove constant text
add markers

HTML File

Figure 2: Generating only the changes

128

sion. The output of "diff' is converted to HTML (Fig.
2) by adding distinquishing markers to the boundaries
of changed sections and removing the unchanged por-
tion of the text between the versions. The use of
"rlog" and "diff with various HTML conversion pro-
grams gave us a simple and effective method to track
and show changes to a MIM entry.

DISCUSSION
As we implemented the history delivery mecha-

nism, we focused on three major technical design
issues and one nontechnical issue.

Word vs. Line Granularity
UNIX "diff' computes the differences between files

at the granularity of a line of text, terminated by the
ASCII character NEWLINE. This is not sufficient
granularity because insertion or deletion of a single
phrase can alter the placement of words on many sub-
sequent text lines. The end result is many more lines
are marked as changed when, in fact, they have not.
For example, if the starting text was formatted as fol-
lows (¶ represents NEWLINE):

Among the 15 molecular variants ofAG71
that had been identified, significant¶
association with hypertension was observedl
with 2 amino acid substitutions, M235T anda
TI 74M. These 2 variants exhibitea¶[
complete linkage disequilibrium, as T1 74M3
occurred on a subset of the haplotypesl
carrying the M235T variant, and both¶
haplotypes were observed at highed
frequency among hypertensives.1

Then if a MIM reference number "(106150.0001)"
was added after M235T, the text will reformat to:

Among the 15 molecular variants ofAG7¶
that had been identified, significant¶
association with hypertension was observeaf[
with 2 amino acid substitutions, M23571
106150.0001) and T174M. These 2
variants exhibited complete linkaged
disequilibrium, as Ti 74M occurred on a¶
subset of the haplotypes carrying the¶
M235T variant, and both haplotypes were¶
observed at higherfrequency amongi
hypertensives.¶

Notice all the line breaks (¶) after M235T have been
changed and will be reported as changed by "diff'.
Therefore, a "diff' at the word granularity level is
needed. However, instead of writing a new "diff' pro-
gram from scratch, the SGML text files were con-
verted to one word per line, then the standard "diff'
program could determine the differences at the word

level. On the other hand, the side effect of this conver-
sion was a 20% increase in the size of text files by the
addition of the NEWLINE character after each word,
based on an average word size of 5 characters. Two
additional UNIX/perl programs are used to intercon-
vert this word-per-line internal file format to the for-
mats needed for distribution or editing (Fig. 3). This
modest increase in both size and performance over-
head is considered acceptable for providing a more
meaningful set of changes to the end-user.

RCS Archive
(word-per-line)

Add current
NEWLINES version

Remove
Checkin NEWLINES

edit

past
versions

To diff
processing

K Convert to
distribution
formats

Figure 3: Interconversions to support
different formats.

SGML Tags
The "diff' program does not understand the hierar-

chical organization of SGML-tagged text: the tags are
just text lines to be processed. This results in differ-
ences that cross SGML tag boundaries. For example,
if the starting paragraph is the following:

<P>Alder (1939) originally described the
anomaly in a brother and sister who later at
puberty developed changes in their hip
joints. The brother was said to be in good
health at age 28 (Davidson, 1961). Jordans
(1947) reported a Dutchfamily showing a
dominant inheritance pattern--9 affected
persons in 3 generations with male-to-male
transmission. </P>

Where "<P>" and "</P>" are SGML tags. Then if we
split the paragraph by adding new text (underlined) in
the middle.

<P>Alder (1939) originally described the
anomaly in a brother and sister who later at
puberty developed changes in their hip
joints. The brother was said to be in good
health at age 28 (Davidson, 1961).

129

<ADDED>This was. in fact. not true
(Steinmann. 1994).d<P>
<P>Alder (1939) described the granules in a
9-year-old girl with scarletfever</ADDED>
Jordans (1947) reported a Dutch family
showing a dominant inheritance pattern--9
affected persons in 3 generations with male-
to-male transmission. <IP>

The resulting start tag of addition (<ADDED>) does
not close when it reaches the end of the leading para-
graph. Although SGML encoding has the option to
close the <ADDED> tag automatically as a solution in
the leading paragraph, it does not have an option to
start a second <ADDED> tag in the trailing paragraph.
To solve this problem, a postprocessing program reads
the "diff' output and adds the correct tags to produce a
file that remains a valid SGML document. An added
benefit of this postprocessing is that the resultant files
can be loaded into any SGML editor with the appro-
priate highlights for the changed text.

Schema Evolution

A characteristic of genomic databases is their rapid
schema evolution as new technology and science reor-
ganize the stored information. The MIM database is
no exception to this evolution: its schema, the SGML
Document Type Definition (DTD), has been changed
several times to support new structures and to handle
reorganizations. This rapid evolution presented a
major design problem because a historical retrieval
can retrieve a version of an entry that is compliant to
an earlier DTD. Consequently, the HTML conversion
program must now ensure that its output remains
meaningful independent of current DTD structure.
Fortunately, only the upper layer structures changed
between revisions and, in turn, only affected the head-
ers in the HTML files. The lower structures, e.g. para-
graphs and reference components, did not change.
Therefore, the code for converting SGML paragraphs
to HTML paragraphs did not need modification. Nev-
ertheless, this was the most difficult portion of the
software project, taking more than 2 person-months of
time to properly design, code, and validate the conver-
sion.

Update Summary
Once the above technical problems were resolved,

we focused on a much more difficult problem: the
absence of summary information when a file was
updated. The RCS archive software directly supports
the entry of summary, therefore no development effort
was needed. However, it was left to the discretion of
the editorial staff to enter the appropriate summary.

Consequently, many updates to the database do not
have the accompanying summary.

In retrospect, it may not have been appropriate for
the editorial staff to review the changes and enter a

summary, because summary construction requires
expert domain knowledge and semantic understand-
ing of the changes. Therefore, without a policy deci-
sion in the editorial process, there was no guidance
for the editors to summarize the changes they were

making to the database. As an experiment, we pro-
vided explicit instructions on how to phrase the sum-
mary to some of the newly hired editorial staff. Their
summaries were then evaluated before being consid-
ered for incorporation into the updates. Approxi-
mately 90% of the summaries were appropriate and
were subsequently incorporated.

Currently, when reviewing the HTML format of the
"rlog" output, the amount of summary information is
variable. Without consistent summary information to
provide key words and phrases, it was difficult for our
WWW users to focus on a particular version. To find a
particular change, a user has to step through each ver-
sion sequentially.
Development Cost and Usage Patterns
The word-per-line implementation was instituted at

the very beginning of conversion to SGML files
because of the need for a word-level diff program for
the editorial staff. All programming for historical
access was coded using the "perl" language and
UNIX shell. The SGML diff processing took 1 per-
son-month and 500 lines of code; HTML formatting
of versioned MIM entries took 2 person-months and
900 lines; and HTML conversions of "rlog" output
and other support utilities took another 1 person-
month and 500 lines. The historical retrievals are
accomplished in real-time, i.e., the diff is executed,
processed, and converted to HTML after the selection
is made. Our experiments have shown that the soft-
ware generates approximately 100 Kbytes of finished
HTML text per minute on our production WWW
server.
The extension for historical information was

installed on ourWWW server without public
announcement in September 1994. Given the point-
and-click nature ofWWW browsers, we expected a
few random users exploring this feature, but our
WWW statistics show that more than a few were
using this feature consistently. As of August 1995,
usage is averaging 60 historical queries per week
from outside users, of which 10 are from repeat users.
MIM editors have found the historical access very

useful to track down quality control issues. For exam-
ple, if a question arises about when a particular edit

130

was made, our editors can use this feature to track the
actual change event and its related source materials. In
addition, our editors have found historical access use-
ful to view all the updates to an entry since the time
they last reviewed it, instead of comparing two printed
copies side-by-side. Furthermore, this feature has
allowed us to identify common editorial mistakes and
apply appropriate remedies.

CONCLUSION
The addition of historical access to the MIM data-

base was successful as a software development
project. The amount of code and effort was reasonable
for the complexity of the problem. The technical
issues of word-level granularity, SGML tagging, and
schema evolution were successfully resolved. How-
ever, as an informatics project, it was limited by sev-
eral factors.
The first limiting factor is that the queries cannot be

made against the state of the database at a given time
in the past. As a compromise, all queries are per-
formed on the current database; then the user can
traverse back into the archives. We hope to develop a
new search engine that can directly access the RCS
archive to extract the past and present keywords.
The second limiting factor is that the log of versions

for historical access has incomplete update summa-
ries. To address this problem would require a policy
decision by the editorial staff to support the proper
entry of summary information. Afterwards, we can
expand the training for summary construction to the
remaining editorial staff.
The third limiting factor is that the current usage of

this feature is from unguided exploration. We plan to
make a general announcement to notify our users and
to provide proper documentation and training for them
in the near future.
We hope the above limiting factors will be resolved

and a useful enhancement to the MIM database will be
created. In addition, we hope the techniques devel-
oped and the issues learned from this project can be
applied to other textual databases.

REFERENCES
1. Snodgrass, R.: Section Overview: Temporal Data-
base Infrastructure. ACM Sigmod Record 23(1):
34-86, 1994.

2. Illustra User's Guide. Time Travel and Archiving.
Release 2.1. Illustra Information Technologies, Inc.
1994.

3. Cellary, W., Jomier, G.: Consistency of Versions in
Databases. In Bancilhon, F., Delobel, C., Kanel-
lakis, P. (Eds): Building an Object-Oriented Data-
base System. Morgan-Kaufman. p. 447-462, 1992.

4. Ramirez, J., Smith, L. Patterson, L.: Medical Infor-
mation Systems: Characterization and Challenges.
ACM Sigmod Record 23(3): 44-53, 1994.

5. McKusick, V. A.: Mendelian Inheritance in Man.
11th Edition. Johns Hopkins Press: Baltimore.
1994.

6. Harman, D., Benson, D., Fitzpatrick, L., Huntz-
inger, R., Goldstein, C.: IRX: An Information
Retrieval System for Experimentation and User
Applications. Proc. RIAO 88 Conf., 840-848, 1988.

7. Goldfarb, C. F.: The SGML Handbook. Oxford
University Press: New York. 1992.

8. Li, P., Kramer, L., Pineo, S., Kulp, D.: Evolving a
Legacy System: Restructing the Mendelian Inherit-
ance in Man Database. 1994 SCAMC Proceedings.
p. 344-348, 1994.

9. Tichy, W. F.: RCS-A system for Version Control.
IEEE Software Practice and Experience. 15(7):
637-654, 1985.

10. Wall, L., Schwartz, R. L.: Programming perl.
O'Reilly & Assoc.: Sebastopol. 1991.

11. Berners-Lee, T., Cailliau, R., Luotonen, A.,
Nielsen, H., Secret, A.: The World-Wide Web.
Communications of ACM. 37(8): 76-82, 1994.

12. MacKenzie, D., Eggert, P., Stallman, R.: Compar-
ing and Merging Files. Free Software Foundation,
GNU documentation. 1993.

ACKNOWLEDGEMENTS
The authors wish to thank Drs. V. A. McKusick, D.

Kingsbury, P. L. Pearson, K. Fasman, and Mr. C.
Brunn for their support on this project. The work was
funded by DOE DE-FC02-9 1ER61230.

131

